Math 524 Exam 4 Solutions

For each of the following vector spaces V and linear operators L :

1. Find all eigenvalues.
2. Find a basis for each eigenspace.
3. Determine all algebraic and geometric multiplicities.
4. Is the operator diagonalizable?
A. $V=\mathbb{R}^{3}, L(x)=\left[\begin{array}{ccc}3 & 0 & 0 \\ 1 & 1 & -1 \\ -2 & 4 & 5\end{array}\right] x$

We calculate the characteristic polynomial: $\left|\begin{array}{ccc}\lambda-3 & 0 & 0 \\ -1 & \lambda-1 & 1 \\ 2 & -4 & \lambda-5\end{array}\right|=(\lambda-3)^{3}$. Hence 3 is the only eigenvalue, of algebraic multiplicity 3 (i.e. $m_{a}(3)=3$). To find its eigenspace, we seek the nullspace of $3 I-A=\left[\begin{array}{ccc}0 & 0 & 0 \\ -1 & 2 & 1 \\ 2 & -4 & -2\end{array}\right]$. The reduced row echelon form of this matrix is $\left[\begin{array}{ccc}1 & -2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$; hence its nullspace has x_{2}, x_{3} free, and $x_{1}=2 x_{2}+x_{3}$. Thus a basis for this nullspace (hence for the eigenspace E_{3}) is $\left\{(2,1,0)^{T},(1,0,1)^{T}\right\}$. The geometric multiplicity of eigenvalue 3 is therefore two (i.e. $m_{g}(3)=2$), and therefore the operator L is NOT diagonalizable, since it is deficient.
B. $V=M_{2,2}(\mathbb{R})$, the set of all 2×2 real matrices. We have $V=W_{1}+W_{2}$, an internal direct sum, where $W_{1}=\left\{A: A=A^{T}\right\}$ is the subspace of symmetric matrices, and $W_{2}=\left\{A: A=-A^{T}\right\}$ is the subspace of skew-symmetric matrices. L is the operator that projects from V to W_{1}.

Thoughtful solution: L fixes W_{1} (i.e. $L(w)=1 w$ for $w \in W_{1}$), so $W_{1} \subseteq E_{1}$, and hence $m_{g}(1) \geq 3$, since W_{1} is 3 dimensional. Also, L kills W_{2} (i.e. $L(w)=0 w$ for $\left.w \in W_{2}\right)$, so $W_{2} \subseteq E_{0}$, and hence $m_{g}(0) \geq 1$, since W_{2} is 1 dimensional. But V is 4 dimensional, so $4 \geq m_{a}(1)+m_{a}(0) \geq m_{g}(1)+m_{g}(0) \geq$ 4, and all the inequalities are equalities (i.e. $m_{a}(1)=m_{g}(1)=3, m_{a}(0)=$ $m_{g}(0)=1$), there are no other eigenvalues besides $\{1,0\}$, and L is diagonalizable. A basis for E_{1} is any basis for W_{1}, such as $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ccc}0 & 1 \\ 1 & 0\end{array}\right]\right\}$; similarly, a basis for E_{0} is any basis for W_{2}, such as $\left\{\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right\}$.

Mechanical solution: Using the standard basis $S=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$, we can write $[L]_{S}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 / 2 & 1 / 2 & 0 \\ 0 & 1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$. (note that $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}0 & 0.5 \\ 0.5 & 0\end{array}\right]+\left[\begin{array}{cc}0 & 0.5 \\ -0.5 & 0\end{array}\right]$, so L projects $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ onto $\left[\begin{array}{ccc}0 & 0.5 \\ 0.5 & 0\end{array}\right]$). We calculate the characteristic polynomial: $\left|\begin{array}{cccc}\lambda-1 & 0 & 0 & 0 \\ 0 & \lambda-1 / 2 & -1 / 2 & 0 \\ 0 & -1 / 2 & \lambda-1 / 2 & 0 \\ 0 & 0 & 0 & \lambda-1\end{array}\right|=\lambda(\lambda-1)^{3}$. Hence the eigenvalues are 0 , with algebraic multiplicity 1 (i.e. $m_{a}(0)=1$), and 1 , with algebraic multiplicity 3 (i.e. $m_{a}(1)=3$). To find the eigenspace of $\lambda=0$, we seek the nullspace of $0 I-[L]_{S}$, which has r.r.e. form $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$. This is seen to be one-dimensional, hence $m_{g}(0)=1$. A basis for E_{0} has S-representation $\left\{[0,1,-1,0]^{T}\right\}$; hence is $\left\{\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right\}$. To find the eigenspace of $\lambda=1$, we seek the nullspace of $1 I-[L]_{S}$, which has r.r.e. form $\left[\begin{array}{cccc}0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$. This is seen to be three-dimensional, hence $m_{g}(1)=3$. A basis for E_{1} has S-representation $\left\{[1,0,0,0]^{T},[0,1,1,0]^{T},[0,0,0,1]^{T}\right\}$; hence is $\left.\left\{\left[\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}0 & 0 \\ 0 & 1\end{array}\right]\right\}\right)$. Because all the geometric multiplicities equal the respective arithmetic multiplicities, L is diagonalizable.
C. $V=C^{1}(\mathbb{R})$, the set of continuously differentiable functions on the real line, $L(f)=t \frac{d f}{d t}$

We try to solve the differential equation $L(f)=t \frac{d f}{d t}=\lambda f$. We use the standard trick for separable differential equations: $\frac{d f}{f}=\lambda \frac{d t}{t}$, which we integrate to get $\ln f=\lambda \ln t+c$, hence $f=e^{c} t^{\lambda}$. Hence there is a solution for every eigenvalue λ; a basis for E_{λ} is $\left\{t^{\lambda}\right\}$. Note that each eigenspace is at most one-dimensional since the differential equation is first-order. Every geometric multiplicity is therefore 1 (i.e. $m_{g}(\lambda)=1$ for every $\lambda \in \mathbb{R}$).

The remaining parts of this answer are quite subtle, so you will not be marked off should your answer differ. The notion of "algebraic multiplicity" has not been defined for this (or any infinite-dimensional) vector space, so this question is moot; however this operator is not diagonalizable (whatever that means in this context), since the set of all eigenvectors is not a basis. For example, $f(t)=\sin t$ is in V, but is not a linear combination of the eigenvectors $\left\{t^{\lambda}\right\}$.

